
ptg18186811

ptg18186811

Praise for the First Edition of Scalability Rules

“Once again, Abbott and Fisher provide a book that I’ll be giving to our engineers. It’s
an essential read for anyone dealing with scaling an online business.”

—Chris Lalonde, GM of Data Stores, Rackspace

“Abbott and Fisher again tackle the difficult problem of scalability in their unique and
practical manner. Distilling the challenges of operating a fast-growing presence on the
Internet into 50 easy-to-understand rules, the authors provide a modern cookbook of
scalability recipes that guide the reader through the difficulties of fast growth.”

—Geoffrey Weber, VP, Internet Operations, Shutterf ly

“Abbott and Fisher have distilled years of wisdom into a set of cogent principles to avoid
many nonobvious mistakes.”

—Jonathan Heiliger, VP, Technical Operations, Facebook

“In The Art of Scalability, the AKF team taught us that scale is not just a technology
challenge. Scale is obtained only through a combination of people, process, and tech-
nology. With Scalability Rules, Martin Abbott and Michael Fisher fill our scalability
toolbox with easily implemented and time-tested rules that once applied will enable
massive scale.”

—Jerome Labat, VP, Product Development IT, Intuit

“When I joined Etsy, I partnered with Mike and Marty to hit the ground running in
my new role, and it was one of the best investments of time I have made in my career.
The indispensable advice from my experience working with Mike and Marty is fully
captured here in this book. Whether you’re taking on a role as a technology leader in a
new company or you simply want to make great technology decisions, Scalability Rules
will be the go-to resource on your bookshelf.”

—Chad Dickerson, CTO, Etsy

“Scalability Rules provides an essential set of practical tools and concepts anyone can use
when designing, upgrading, or inheriting a technology platform. It’s very easy to focus
on an immediate problem and overlook issues that will appear in the future. This book
ensures strategic design principles are applied to everyday challenges.”

—Robert Guild, Director and Senior Architect, Financial Services

ptg18186811

“An insightful, practical guide to designing and building scalable systems. A must-read for
both product building and operations teams, this book offers concise and crisp insights
gained from years of practical experience of AKF principals. With the complexity of
modern systems, scalability considerations should be an integral part of the architecture
and implementation process. Scaling systems for hypergrowth requires an agile, iterative
approach that is closely aligned with product features; this book shows you how.”

—Nanda Kishore, CTO, ShareThis

“For organizations looking to scale technology, people, and processes rapidly or effec-
tively, the twin pairing of Scalability Rules and The Art of Scalability is unbeatable. The
rules-driven approach in Scalability Rules not only makes this an easy reference com-
panion, but also allows organizations to tailor the Abbott and Fisher approach to their
specific needs both immediately and in the future!”

—Jeremy Wright, CEO, BNOTIONS.ca, and Founder, b5media

ptg18186811

Scalability Rules

Second Edition

ptg18186811

This page intentionally left blank

ptg18186811

Scalability Rules

Principles for Scaling Web Sites

Second Edition

Martin L. Abbott
Michael T. Fisher

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg18186811

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016944687

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-443160-4
ISBN-10: 0-13-443160-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
1 16

Editor-in-Chief

Mark L. Taub

Executive Editor

Laura Lewin

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Full-Service

Production Manager

Julie B. Nahil

Project Editor

Dana Wilson

Copy Editor

Barbara Wood

Indexer

Jack Lewis

Proofreader

Barbara Lasoff

Technical Reviewers

Camille Fournier
Chris Lalonde
Mark Uhrmacher

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

The CIP Group

http://www.pearsoned.com/permissions/

ptg18186811

❖

This book is dedicated to our friend and partner “Big” Tom Keeven.

“Big” refers to the impact he’s had in helping countless companies scale

in his nearly 30 years in the business.

 ❖

ptg18186811

This page intentionally left blank

ptg18186811

Contents

Preface xv

Acknowledgments xxi

About the Authors xxiii

1 Reduce the Equation 1
Rule 1—Don’t Overengineer the Solution 3
Rule 2—Design Scale into the Solution (D-I-D
Process) 6

Design 6
Implement 7
Deploy 8

Rule 3—Simplify the Solution Three Times Over 8
How Do I Simplify My Scope? 9
How Do I Simplify My Design? 9
How Do I Simplify My Implementation? 10

Rule 4—Reduce DNS Lookups 10
Rule 5—Reduce Objects Where Possible 12
Rule 6—Use Homogeneous Networks 15
Summary 15
Notes 16

2 Distribute Your Work 19
Rule 7—Design to Clone or Replicate Things
(X Axis) 22
Rule 8—Design to Split Different Things (Y Axis) 24
Rule 9—Design to Split Similar Things (Z Axis) 26
Summary 28
Notes 28

3 Design to Scale Out Horizontally 29
Rule 10—Design Your Solution to Scale Out,
Not Just Up 31
Rule 11—Use Commodity Systems (Goldfish Not
Thoroughbreds) 33
Rule 12—Scale Out Your Hosting Solution 35
Rule 13—Design to Leverage the Cloud 40
Summary 42
Notes 42

ptg18186811

x Contents

4 Use the Right Tools 43
Rule 14—Use Databases Appropriately 47
Rule 15—Firewalls, Firewalls Everywhere! 52
Rule 16—Actively Use Log Files 55
Summary 58
Notes 58

5 Get Out of Your Own Way 59
Rule 17—Don’t Check Your Work 61
Rule 18—Stop Redirecting Traffic 64
Rule 19—Relax Temporal Constraints 68
Summary 70
Notes 70

6 Use Caching Aggressively 73
Rule 20—Leverage Content Delivery Networks 75
Rule 21—Use Expires Headers 77
Rule 22—Cache Ajax Calls 80
Rule 23—Leverage Page Caches 84
Rule 24—Utilize Application Caches 86
Rule 25—Make Use of Object Caches 88
Rule 26—Put Object Caches on Their Own “Tier” 90
Summary 91
Notes 92

7 Learn from Your Mistakes 93
Rule 27—Learn Aggressively 95
Rule 28—Don’t Rely on QA to Find Mistakes 100
Rule 29—Failing to Design for Rollback Is Designing
for Failure 102
Summary 105
Notes 106

8 Database Rules 107
Rule 30—Remove Business Intelligence from
Transaction Processing 109
Rule 31—Be Aware of Costly Relationships 111
Rule 32—Use the Right Type of Database Lock 114
Rule 33—Pass on Using Multiphase Commits 116
Rule 34—Try Not to Use Select for Update 118

ptg18186811

xiContents

Rule 35—Don’t Select Everything 120
Summary 121
Notes 122

9 Design for Fault Tolerance and Graceful
Failure 123
Rule 36—Design Using Fault-Isolative
“Swim Lanes” 124
Rule 37—Never Trust Single Points of Failure 130
Rule 38—Avoid Putting Systems in Series 132
Rule 39—Ensure That You Can Wire On and
Off Features 135
Summary 138

10 Avoid or Distribute State 139
Rule 40—Strive for Statelessness 140
Rule 41—Maintain Sessions in the Browser
When Possible 142
Rule 42—Make Use of a Distributed Cache
for States 144
Summary 146
Notes 146

11 Asynchronous Communication and Message
Buses 147
Rule 43—Communicate Asynchronously as Much
as Possible 149
Rule 44—Ensure That Your Message Bus Can
Scale 151
Rule 45—Avoid Overcrowding Your Message Bus 154
Summary 157

12 Miscellaneous Rules 159
Rule 46—Be Wary of Scaling through Third
Parties 161
Rule 47—Purge, Archive, and Cost-Justify Storage 163
Rule 48—Partition Inductive, Deductive, Batch, and User
Interaction (OLTP) Workloads 166
Rule 49—Design Your Application to
Be Monitored 169
Rule 50—Be Competent 172

ptg18186811

xii Contents

Summary 174
Notes 174

13 Rule Review and Prioritization 177
A Risk-Benefit Model for Evaluating Scalability
Projects and Initiatives 177
50 Scalability Rules in Brief 180

Rule 1—Don’t Overengineer the Solution 180
Rule 2—Design Scale into the Solution
(D-I-D Process) 181
Rule 3—Simplify the Solution Three
Times Over 181
Rule 4—Reduce DNS Lookups 182
Rule 5—Reduce Objects Where Possible 182
Rule 6—Use Homogeneous Networks 182
Rule 7—Design to Clone or Replicate Things
(X Axis) 183
Rule 8—Design to Split Different Things
(Y Axis) 183
Rule 9—Design to Split Similar Things (Z Axis) 184
Rule 10—Design Your Solution to Scale Out,
Not Just Up 184
Rule 11—Use Commodity Systems (Goldfish Not
Thoroughbreds) 185
Rule 12—Scale Out Your Hosting Solution 185
Rule 13—Design to Leverage the Cloud 185
Rule 14—Use Databases Appropriately 186
Rule 15—Firewalls, Firewalls Everywhere! 186
Rule 16—Actively Use Log Files 187
Rule 17—Don’t Check Your Work 187
Rule 18—Stop Redirecting Traffic 188
Rule 19—Relax Temporal Constraints 188
Rule 20—Leverage Content Delivery Networks 188
Rule 21—Use Expires Headers 189
Rule 22—Cache Ajax Calls 189
Rule 23—Leverage Page Caches 189
Rule 24—Utilize Application Caches 190
Rule 25—Make Use of Object Caches 190

ptg18186811

xiiiContents

Rule 26—Put Object Caches on Their
Own “Tier” 190
Rule 27—Learn Aggressively 191
Rule 28—Don’t Rely on QA to Find Mistakes 191
Rule 29—Failing to Design for Rollback Is Designing
for Failure 191
Rule 30—Remove Business Intelligence from
Transaction Processing 192
Rule 31—Be Aware of Costly Relationships 192
Rule 32—Use the Right Type of Database
Lock 193
Rule 33—Pass on Using Multiphase Commits 193
Rule 34—Try Not to Use Select for Update 194
Rule 35—Don’t Select Everything 194
Rule 36—Design Using Fault-Isolative
“Swim Lanes” 194
Rule 37—Never Trust Single Points of Failure 195
Rule 38—Avoid Putting Systems in Series 195
Rule 39—Ensure That You Can Wire On and
Off Features 195
Rule 40—Strive for Statelessness 196
Rule 41—Maintain Sessions in the Browser
When Possible 196
Rule 42—Make Use of a Distributed Cache for
States 196
Rule 43—Communicate Asynchronously as Much
as Possible 197
Rule 44—Ensure That Your Message Bus
Can Scale 197
Rule 45—Avoid Overcrowding Your
Message Bus 198
Rule 46—Be Wary of Scaling through
Third Parties 198
Rule 47—Purge, Archive, and Cost-Justify
Storage 198
Rule 48—Partition Inductive, Deductive, Batch,
and User Interaction (OLTP) Workloads 199
Rule 49—Design Your Application to
Be Monitored 199
Rule 50—Be Competent 200

ptg18186811

xiv Contents

A Benefit/Priority Ranking of the Scalability Rules 200
Very High—1 200
High—2 201
Medium—3 201
Low—4 202
Very Low—5 202

Summary 202

Index 205

ptg18186811

Preface

Thanks for your interest in the second edition of Scalability Rules! This book is meant
to serve as a primer, a refresher, and a lightweight reference manual to help engineers,
architects, and managers develop and maintain scalable Internet products. It is laid out
in a series of rules, each of them bundled thematically by different topics. Most of the
rules are technically focused, and a smaller number of them address some critical mind-
set or process concern, each of which is absolutely critical to building scalable products.
The rules vary in their depth and focus. Some rules are high level, such as defining a
model that can be applied to nearly any scalability problem; others are specific and may
explain a technique, such as how to modify headers to maximize the “cacheability” of
content. In this edition we’ve added stories from CTOs and entrepreneurs of successful
Internet product companies from startups to Fortune 500 companies. These stories
help to illustrate how the rules were developed and why they are so important within
high-transaction environments. No story serves to better illustrate the challenges and
demands of hyper-scale on the Internet than Amazon. Rick Dalzell, Amazon’s first CTO,
illustrates several of the rules within this book in his story, which follows.

Taming the Wild West of the Internet
From the perspective of innovation and industry disruption, few companies have had
the success of Amazon. Since its founding in 1994, Amazon has contributed to redefining
at least three industries: consumer commerce, print publishing, and server hosting. And
Amazon’s contributions go well beyond just disrupting industries; they’ve consistently
been a thought leader in service-oriented architectures, development team construction,
and a myriad of other engineering approaches. Amazon’s size and scale along all dimen-
sions of its business are simply mind-boggling; the company has consistently grown at
a rate unimaginable for traditional brick-and-mortar businesses. Since 1998, Amazon
grew from $600 million (no small business at all) in annual revenue to an astounding
$107 billion (that’s “billion” with a B) in 2015.1 Walmart, the world’s largest retailer,
had annual sales of $485.7 billion in 2015.2 But Walmart has been around since 1962,
and it took 35 years to top $100 billion in sales compared to Amazon’s 21 years. No book
professing to codify the rules of scalability from the mouths of CTOs who have created
them would be complete without one or more stories from Amazon.

Jeff Bezos incorporated Amazon (originally Cadabra) in July of 1994 and launched
Amazon.com as an online bookseller in 1995. In 1997, Bezos hired Rick Dalzell, who
was then the VP of information technology at Walmart. Rick spent the next ten years

ptg18186811

xvi Preface

at Amazon leading Amazon’s development efforts. Let’s join Rick as he relays the story
of his Amazon career:

“When I was at Walmart, we had one of the world’s largest relational databases run-
ning the company’s operations. But it became clear to the Amazon team pretty quickly
that the big, monolithic database approach was simply not going to work for Amazon.
Even back then, we handled more transactions in a week on the Amazon system than
the Walmart system had to handle in a month. And when you add to that our incredible
growth, well, it was pretty clear that monoliths simply were not going to work. Jeff
[Bezos] took me to lunch one day, and I told him we needed to split the monolith into
services. He said, ‘That’s great—but we need to build a moat around this business and
get to 14 million customers.’ I explained that without starting to work on these splits,
we wouldn’t be able to make it through Christmas.”

Rick continued, “Now keep in mind that this is the mid- to late nineties. There
weren’t a lot of companies working on distributed transaction systems. There weren’t a
lot of places to go to find help in figuring out how to scale transaction processing systems
growing in excess of 300% year on year. There weren’t any rulebooks, and there weren’t
any experts who had ‘been there and done that.’ It was a new frontier—a new Wild,
Wild West. But it was clear to us that we had to distribute this thing to be successful.
Contrary to what made me successful at Walmart, if we were going to scale our solution
and our organization, we were going to need to split the solution and the underlying
database up into a number of services.” (The reader should note that an entire chapter
of this book, Chapter 2, “Distribute Your Work,” is dedicated to such splits.)

“We started by splitting the commerce and store engine from the back-end fulfillment
systems that Amazon uses. This was really the start of our journey into the services-
oriented architecture that folks have heard about at Amazon. All sorts of things came
out of this, including Amazon’s work on team independence and the API contracts.
Ultimately, the work created a new industry [infrastructure as a service] and a new business
for Amazon in Amazon Web Services—but that’s another story for another time. The
work wasn’t easy; some components of the once-monolithic database such as customer
data—what we called ‘the Amazon customer database or ACB’—took several years to
figure out how to segment. We started with services that were high in transaction volumes
and could be quickly split in both software and data, like the front- and back-end systems
that I described. Each split we made would further distribute the system and allow
additional scale. Finally, we got back to solving the hairy problem of ACB and split it
out around 2004.

“The team was incredibly smart, but we also had a bit of luck from time to time. It’s
not that we never failed, but when we would make a mistake we would quickly correct
it and figure out how to fix the associated problems. The lucky piece is that none of our
failures were as large and well publicized as those of some of the other companies strug-
gling through the same learning curve. A number of key learnings in building these
distributed services came out of these splits, learnings such as the need to limit session
and state, stay away from distributed two-phase commit transactions, communicating
asynchronously whenever possible, and so on. In fact, without a strong bias toward
asynchronous communication through a publish-and-subscribe message bus, I don’t

ptg18186811

xviiPreface

know if we could have ever split and scaled the way we did. We also learned to allow
things to be eventually consistent where possible, in just about everything except payments.
Real-time consistency is costly, and wherever people wouldn’t really know the difference,
we’d just let things get ‘fuzzy’ for a while and let them sync up later. And of course there
were a number of ‘human’ or team learnings as well such as the need to keep teams small3
and to have specific contracts between teams that use the services of other teams.”

Rick’s story of how he led Amazon’s development efforts in scaling for a decade is
incredibly useful. From his insights we can garner a number of lessons that can be applied
to many companies’ scaling challenges. We’ve used Rick’s story along with those of
several other notable CTOs and entrepreneurs of successful Internet product companies
ranging from startups to Fortune 500 companies to illustrate how important the rules
in this book are to scaling high-transaction environments.

Quick Start Guide
Experienced engineers, architects, and managers can read through the header sections
of all the rules that contain the what, when, how, and why. You can browse through
each chapter to read these, or you can jump to Chapter 13, “Rule Review and Prioriti-
zation,” which has a consolidated view of the headers. Once you’ve read these, go back
to the chapters that are new to you or that you find more interesting.

For less experienced readers we understand that 50 rules can seem overwhelming.
We do believe that you should eventually become familiar with all the rules, but we
also understand that you need to prioritize your time. With that in mind, we have picked
out five chapters for managers, five chapters for software developers, and five chapters
for technical operations that we recommend you read before the others to get a jump
start on your scalability knowledge.

Managers:

 n Chapter 1, “Reduce the Equation”
 n Chapter 2, “Distribute Your Work”
 n Chapter 4, “Use the Right Tools”
 n Chapter 7, “Learn from Your Mistakes”
 n Chapter 12, “Miscellaneous Rules”

Software developers:

 n Chapter 1, “Reduce the Equation”
 n Chapter 2, “Distribute Your Work”
 n Chapter 5, “Get Out of Your Own Way”
 n Chapter 10, “Avoid or Distribute State”
 n Chapter 11, “Asynchronous Communication and Message Buses”

ptg18186811

xviii Preface

Technical operations:

 n Chapter 2, “Distribute Your Work”
 n Chapter 3, “Design to Scale Out Horizontally”
 n Chapter 6, “Use Caching Aggressively”
 n Chapter 8, “Database Rules”
 n Chapter 9, “Design for Fault Tolerance and Graceful Failure”

As you have time later, we recommend reading all the rules to familiarize yourself
with the rules and concepts that we present no matter what your role. The book is short
and can probably be read in a coast-to-coast f light in the United States.

After the first read, the book can be used as a reference. If you are looking to fix or
re-architect an existing product, Chapter 13 offers an approach to applying the rules to
your existing platform based on cost and the expected benefit (presented as a reduction
of risk). If you already have your own prioritization mechanism, we do not recommend
changing it for ours unless you like our approach better. If you don’t have an existing
method of prioritization, our method should help you think through which rules you
should apply first.

If you are just starting to develop a new product, the rules can help inform and guide
you as to best practices for scaling. In this case, the approach of prioritization represented
in Chapter 13 can best be used as a guide to what’s most important to consider in your
design. You should look at the rules that are most likely to allow you to scale for your
immediate and long-term needs and implement those.

For all organizations, the rules can serve to help you create a set of architectural
principles to drive future development. Select the 5, 10, or 15 rules that will help your
product scale best and use them as an augmentation of your existing design reviews.
Engineers and architects can ask questions relevant to each of the scalability rules that
you select and ensure that any new significant design meets your scalability standards.
While these rules are as specific and fixed as possible, there is room for modification
based on your system’s particular criteria. If you or your team has extensive scalability
experience, go ahead and tweak these rules as necessary to fit your particular scenario.
If you and your team lack large-scale experience, use the rules exactly as is and see how
far they allow you to scale.

Finally, this book is meant to serve as a reference and handbook. Chapter 13 is set up
as a quick reference and summary of the rules. Whether you are experiencing problems
or simply looking to develop a more scalable solution, Chapter 13 can be a quick reference
guide to help pinpoint the rules that will help you out of your predicament fastest or
help you define the best path forward in the event of new development. Besides using
this as a desktop reference, also consider integrating this into your organization by one
of many tactics such as taking one or two rules each week and discussing them at your
technology all-hands meeting.

ptg18186811

xixPreface

Why a Second Edition?
The first edition of Scalability Rules was the first book to address the topic of scalability
in a rules-oriented fashion. Customers loved its brevity, ease of use, and convenience.
But time and time again readers and clients of our firm, AKF Partners, asked us to tell
the stories behind the rules. Because we pride ourselves in putting the needs of our
clients first, we edited this book to include stories upon which the rules are based.

In addition to telling the stories of multiple CTOs and successful entrepreneurs,
editing the book for a second edition allowed us to update the content to remain
consistent with the best practices in our industry. The second edition also gave us the
opportunity to subject our material to another round of technical peer reviews and
production editing. All of this results in a second edition that’s easier to read, easier to
understand, and easier to apply.

How Does Scalability Rules Differ from The Art of
Scalability?
The Art of Scalability, Second Edition (ISBN 0134032802, published by Addison-Wesley),
our first book on the topic of scalability, focused on people, process, and technology,
whereas Scalability Rules is predominantly a technically focused book. Don’t get us
wrong; we still believe that people and process are the most important components of
building scalable solutions. After all, it’s the organization, including both the individual
contributors and the management, that succeeds or fails in producing scalable solu-
tions. The technology isn’t at fault for failing to scale—it’s the people who are at fault
for building it, selecting it, or integrating it. But we believe that The Art of Scalability
adequately addresses the people and process concerns around scalability, and we wanted
to go into greater depth on the technical aspects of scalability.

Scalability Rules expands on the third (technical) section of The Art of Scalability. The
material in Scalability Rules is either new or discussed in a more technical fashion than
in The Art of Scalability. As some reviewers on Amazon point out, Scalability Rules works
well as both a standalone book and as a companion to The Art of Scalability.

Notes
1. “Net Sales Revenue of Amazon from 2004 to 2015,”

www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/.

2. Walmart, Corporate and Financial Facts,

http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-
announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-
e-commerce-walmart-us-comp-sales-increased-15-percent.

3. Authors’ note: Famously known as Amazon’s Two-Pizza Rule—no team can be
larger than that which two pizzas can feed.

http://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent

ptg18186811

xx Preface

Register your copy of Scalability Rules, Second Edition, at informit.com for conve-
nient access to downloads, updates, and corrections as they become available. To
start the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780134431604) and click Submit. Once the
process is complete, you will find any available bonus content under “Registered
Products.”

ptg18186811

Acknowledgments

The rules contained within this book weren’t developed by our partnership alone.
They are the result of nearly 70 years of work with clients, colleagues, and partners
within nearly 400 companies, divisions, and organizations. Each of them contributed, in
varying degrees, to some or all of the rules within this book. As such, we would like to
acknowledge the contributions of our friends, partners, clients, coworkers, and bosses
for whom or with which we’ve worked over the past several (combined) decades. The
CTO stories from Rick Dalzell, Chris Lalonde, James Barrese, Lon Binder, Brad
Peterson, Grant Klopper, Jeremy King, Tom Keeven, Tayloe Stansbury, Chris Schrem-
ser, and Chuck Geiger included herein are invaluable in helping to illustrate the need
for these 50 rules. We thank each of you for your time, thoughtfulness, and consider-
ation in telling us your stories.

We would also like to acknowledge and thank the editors who have provided guid-
ance, feedback, and project management. The technical editors from both the first and
second editions—Geoffrey Weber, Chris Lalonde, Camille Fournier, Jeremy Wright,
Mark Urmacher, and Robert Guild—shared with us their combined decades of technology
experience and provided invaluable insight. Our editors from Addison-Wesley, Songlin
Qiu, Laura Lewin, Olivia Basegio, and Trina MacDonald, provided supportive stylistic
and rhetorical guidance throughout every step of this project. Thank you all for helping
with this project.

Last but certainly not least, we’d like to thank our families and friends who put up
with our absence from social events as we sat in front of a computer screen and wrote.
No undertaking of this magnitude is done single-handedly, and without our families’
and friends’ understanding and support this would have been a much more arduous
journey.

ptg18186811

This page intentionally left blank

ptg18186811

About the Authors

Martin L. Abbott is a founding partner of AKF Partners, a growth consulting firm
focusing on meeting the needs of today’s fast-paced and hyper-growth companies.
Marty was formerly the COO of Quigo, an advertising technology startup acquired
by AOL in 2007. Prior to Quigo, Marty spent nearly six years at eBay, most recently as
SVP of technology and CTO and member of the CEO’s executive staff. Prior to eBay,
Marty held domestic and international engineering, management, and executive posi-
tions at Gateway and Motorola. Marty has served on a number of boards of directors
for public and private companies. He spent a number of years as both an active-duty
and reserve officer in the US Army. Marty has a BS in computer science from the United
States Military Academy, an MS in computer engineering from the University of Florida,
is a graduate of the Harvard Business School Executive Education Program, and has a
Doctorate of Management from Case Western Reserve University.

Michael T. Fisher is a founding partner of AKF Partners, a growth consulting firm
focusing on meeting the needs of today’s fast-paced and hyper-growth companies. Prior
to cofounding AKF Partners, Michael held many industry roles including CTO of
Quigo, acquired by AOL in 2007, and VP of engineering and architecture for PayPal. He
served as a pilot in the US Army. Michael received a PhD and MBA from Case Western
Reserve University’s Weatherhead School of Management, an MS in information systems
from Hawaii Pacific University, and a BS in computer science from the United States
Military Academy (West Point). Michael is an adjunct professor in the Design and
Innovation Department at Case Western Reserve University’s Weatherhead School of
Management.

ptg18186811

This page intentionally left blank

ptg18186811

1
Reduce the Equation

By nearly any measure, Jeremy King has had a successful and exciting career. In the
mid-1990s, before the heyday of the Internet, Jeremy was involved in Bay Networks’
award-winning SAP implementation. From there, Jeremy joined the dot-com boom as
the VP of engineering at Petopia.com. Jeremy often jokes that he received his “real-
world MBA” from the “University of Hard Knocks” during the dot-com bubble at
Petopia. From Petopia, Jeremy joined eBay as the director of architecture for V3, eBay’s
then-next-generation commerce platform. If Petopia offered a lesson in economics and
financing, eBay (where Jeremy later became a VP) offered an unprecedented education
in scaling systems. Jeremy spent three years as the EVP of technology at LiveOps and is
now the CTO at WalmartLabs.

eBay taught Jeremy many lessons, including the need for simplicity in architecture.
For context, when Jeremy joined in 2001, eBay stood with rarefied companies like
Amazon and Google at the extreme edge of online transaction processing (OLTP) and
scale. For the full year of 2001, eBay recorded $2.735 billion1 in gross merchandise sales as
compared to Walmart’s worldwide sales of $191.3 billion (online sales were not reported)2
and Amazon’s total sales of $3.12 billion.3 Underneath this heady success, however, lay
a dark past for eBay.

In June of 1999 eBay experienced a near death sentence because of an outage lasting
almost 24 hours.4 The eBay site continued to undergo outages of varying durations
for months after the outage of June 1999, and although each was caused by different
trigger events, all of them could be traced back to the inability of the site to scale to
nearly unprecedented user growth. These outages changed the culture of the company
forever. More specifically, they focused the company on attempting to set the standard
for high availability and reliability of its service offering.

In 1999, eBay sold most of its merchandise using an auction format. Auctions are
unique entities because, as compared to typical online commerce transactions, auction
items tend to be short-lived and have an inordinately high volume of bids (write transac-
tions) and views (read transactions) near the end of their expected duration. Most items
for sale in traditional platforms have a relatively f lat number of transactions through their
life with the typical seasonal peaks, whereas eBay had millions of items for sale, and
all of the user activity would be directed at a fraction of those items at any given time.
This represented a unique problem as database load, for instance, would be primarily
on a small number of items, and the database (then a monolith) that supported eBay
would struggle with physical and logical contention on these items. This in turn could
manifest itself as site slowness and even complete outages.

ptg18186811

2 Chapter 1 Reduce the Equation

Jeremy’s first eBay job was to lead a team to redefine eBay’s software architecture
with the goal of keeping incidents like the June 1999 outage from happening again.
This was a task made even more complex by the combination of eBay’s meteoric growth
and the difficulty of the auction format. The project, internally named V3, was a reimple-
mentation of the eBay commerce engine in Java (the prior implementation was C++)
and a re-architecture of the site to allow for multiple “sharded” databases along the X, Y,
and Z axes described in Chapter 2, “Distribute Your Work.”

The team approached every component with a maniacal focus, attempting to ensure
that everything could be nearly infinitely scaled and that any failure could be resolved
quickly with minimal impact. “My primary lesson learned,” Jeremy indicated, “was
that we treated everything as if it had the same complexity and business criticality as
the actual bidding process on an auction. Absolutely everything from the display of
images to eBay’s reputation [often called Feedback] system on the site was treated simi-
larly with similar fault tolerance.

“It’s important to remember,” continued Jeremy, “that this was 2001 and that there
were very few companies experiencing our growth at our size online. As such, we
really couldn’t go anywhere—whether to a vendor or an open-source solution—to
solve our problems. We had to invent everything ourselves, something I’d really prefer
not to do.”

At first glance, it is difficult to tease out the lesson in Jeremy’s comments. So what if
everything was built in the same bulletproof fashion as an auction? “Well,” said Jeremy
with a laugh, “not everything is as complex as an auction. Let’s take the reputation
engine, for instance. It doesn’t have the same competition over short periods of time
as auctions. As such, it really doesn’t need to have the same principles applied to it.
The system simply scales more cost-effectively and potentially is as highly available,
if you take an approach that recognizes you don’t have the same level of transactional
competition on subsets of data over short periods of time. More importantly, Feed-
back has one write transaction per item sold, whereas an auction may have hundreds of
attempted write transactions in a second on a single item. This isn’t the same as dec-
rementing inventory; it’s a complex comparison of bid price to all other bids and then
the calculation of a ‘second price.’ But we treated that and everything else as if we were
solving the same problem as auctions—specifically, to be able to scale under incredible
demand, for small subsets of data, much of it happening in the last few seconds of the
life of an auction.”

That being clear, we wondered what the impact of making some pieces of V3 more
complex than others might be. “That’s easy,” said Jeremy. “While V3 overall was a
success, I think in hindsight we could have potentially completed it faster or cheaper
or both. Moreover, because some aspects of it were overly complex or alternatively not
as simple as the problem demanded, the maintenance costs of those aspects are higher.
Contrast this approach with an architecture principle I’ve since learned and applied at
both Walmart and LiveOps: match the effort and approach to the complexity of the
problem. Not every solution has the same complexity—take the simplest approach to
achieve the desired outcome. While having a standard platform or language can seem

ptg18186811

3Rule 1—Don’t Overengineer the Solution

desirable from a scaling, maintainability, or reuse aspect, taking the simple approach on
a new open-source project, language, or platform can vastly change the cost, time to
market, or innovation you can deliver for your customers.”

Jeremy’s story is about not making things harder than they need to be, or putting it
another way, keeping things as simple as possible. Our view is that a complex problem
is really just a collection of smaller, simpler problems waiting to be solved. This chapter
is about making big problems small, and in so doing achieving big results with less
work.

As is the case with many of the chapters in Scalability Rules, the rules here vary in
size and complexity. Some are overarching rules easily applied to several aspects of
our design. Some rules are very granular and prescriptive in their implementation to
specific systems.

Rule 1—Don’t Overengineer the Solution
Rule 1: What, When, How, and Why

What: Guard against complex solutions during design.

When to use: Can be used for any project and should be used for all large or complex
systems or projects.

How to use: Resist the urge to overengineer solutions by testing ease of understanding
with fellow engineers.

Why: Complex solutions are excessively costly to implement and are expensive to maintain
long term.

Key takeaways: Systems that are overly complex limit your ability to scale. Simple systems
are more easily and cost-effectively maintained and scaled.

As is explained in its Wikipedia entry, overengineering falls into two broad categories.5
The first category covers products designed and implemented to exceed their useful
requirements. We discuss this problem brief ly for completeness, but in our estimation its
impact on scale is small compared to that of the second problem. The second category
of overengineering covers products that are made to be overly complex. As we earlier
implied, we are most concerned about the impact of this second category on scalability.
But first, let’s address the notion of exceeding requirements.

To explain the first category of overengineering, exceeding useful requirements,
we must first make sense of the term useful, which here means simply “capable of being
used.” For example, designing an HVAC unit for a family house that is capable of heating
that house to 300 degrees Fahrenheit in outside temperatures of 0 Kelvin simply has no
use for us anywhere. The effort necessary to design and manufacture such a solution is
wasted as compared to a solution that might heat the house to a comfortable living tem-
perature in environments where outside temperatures might get close to –20 degrees
Fahrenheit. This type of overengineering might have cost overrun elements, including
a higher cost to develop (engineer) the solution and a higher cost to implement the

ptg18186811

4 Chapter 1 Reduce the Equation

solution in hardware and software. It may further impact the company by delaying the
product launch if the overengineered system took longer to develop than the useful sys-
tem. Each of these costs has stakeholder impact as higher costs result in lower margins,
and longer development times result in delayed revenue or benefits. Scope creep, or the
addition of scope between initial product definition and initial product launch, is one
manifestation of overengineering.

An example closer to our domain of experience might be developing an employee
time card system capable of handling a number of employees for a single company that
equals or exceeds 100 times the population of Planet Earth. The probability that the
Earth’s population will increase 100-fold within the useful life of the software is tiny. The
possibility that all of those people would work for a single company is even smaller.
We certainly want to build our systems to scale to customer demands, but we don’t want
to waste time implementing and deploying those capabilities too far ahead of our need
(see Rule 2).

The second category of overengineering deals with making something overly com-
plex and making something in a complex way. Put more simply, the second category
consists of either making something work harder to get a job done than is necessary,
making a user work harder to get a job done than is necessary, or making an engineer
work harder to understand something than is necessary. Let’s dive into each of these
three areas of overly complex systems.

What does it mean to make something work harder than is necessary? Jeremy King’s
example of building all the features constituting eBay’s site to the demanding require-
ments of the auction bidding process is a perfect example of making something (e.g.,
the Feedback system) work harder than is necessary. Some other examples come from
the real world. Imagine that you ask your significant other to go to the grocery store.
When he agrees, you tell him to pick up one of everything at the store, and then to
pause and call you when he gets to the checkout line. Once he calls, you will tell him the
handful of items that you would like from the many baskets of items he has collected,
and he can throw everything else on the f loor. “Don’t be ridiculous!” you might say.
But have you ever performed a select (*) from schema_name.table_name SQL
statement within your code only to cherry-pick your results from the returned set (see
Rule 35 in Chapter 8, “Database Rules”)? Our grocery store example is essentially the
same activity as the select (*) case. How many lines of conditionals have you added
to your code to handle edge cases and in what order are they evaluated? Do you handle
the most likely case first? How often do you ask your database to return a result set
you just returned, and how often do you re-create an HTML page you just displayed?
This particular problem (doing work repetitively when you can just go back and get
your last correct answer) is so rampant and easily overlooked that we’ve dedicated an
entire chapter (Chapter 6, “Use Caching Aggressively”) to this topic! You get the
point.

What do we mean by making a user work harder than is necessary? In many cases,
less is more. Many times in the pursuit of trying to make a system f lexible, we strive
to cram as many odd features as possible into it. Variety is not always the spice of life.

ptg18186811

5Rule 1—Don’t Overengineer the Solution

Many times users just want to get from point A to point B as quickly as possible without
distractions. If 99% of your market doesn’t care about being able to save their blog as a
.pdf file, don’t build in a prompt asking them if they’d like to save it as a .pdf. If your
users are interested in converting .wav files to MP3 files, they are already sold on a loss
of fidelity, so don’t distract them with the ability to convert to lossless compression
FLAC files.

Finally, we come to the far-too-common problem of making software too complex
for other engineers to easily and quickly understand. Back in the day it was all the rage,
and in fact there were competitions, to create complex code that would be difficult
for others to understand. Medals were handed out to the person who could develop
code that would bring senior developers to tears of acquiescence within code reviews.
Complexity became the intellectual cage within which geeky code slingers would
battle for organizational dominance. For those interested in continuing in the geek fest,
but in a “safe room” away from the potential stakeholder value destruction of doing
it “for real,” we suggest you partake in the International Obfuscated C Code Contest
at www0.us.ioccc.org/index.html. For everyone else, recognize that your job is to
develop simple, easy-to-understand solutions that are easy to maintain and create share-
holder value.

We should all strive to write code that everyone can understand. The real measure
of a great engineer is how quickly that engineer can simplify a complex problem (see
Rule 3) and develop an easily understood and maintainable solution. Easy-to-follow
solutions allow less-senior engineers to more quickly come up to speed to support systems.
Easy-to-understand solutions mean that problems can be found earlier during trouble-
shooting, and systems can be restored to their proper working order faster. Easy-to-follow
solutions increase the scalability of your organization and your solution.

A great test to determine whether something is too complex is to have the engineer
in charge of solving a given complex problem present his or her solution to several
engineering cohorts within the company. The cohorts should represent different engi-
neering experience levels as well as varying tenures within the company (we make a
distinction here because you might have experienced engineers with very little company
experience). To pass this test, each of the engineering cohorts should easily understand
the solution, and each cohort should be able to describe the solution, unassisted, to others
not otherwise knowledgeable about it. If any cohort does not understand the solution,
the team should debate whether the system is overly complex.

Overengineering is one of the many enemies of scale. Developing a solution beyond
that which is useful simply wastes money and time. It may further waste processing
resources, increase the cost of scale, and limit the overall scalability of the system (how
far that system can be scaled). Building solutions that are overly complex has a similar
effect. Systems that work too hard increase your cost and limit your ultimate size. Systems
that make users work too hard limit how quickly you are likely to increase the number
of users and therefore how quickly you will grow your business. Systems that are too
complex to understand kill organizational productivity and the ease with which you can
add engineers or add functionality to your system.

http://www0.us.ioccc.org/index.html

ptg18186811

6 Chapter 1 Reduce the Equation

Rule 2—Design Scale into the Solution
(D-I-D Process)

Rule 2: What, When, How, and Why

What: An approach to provide JIT (just-in-time) scalability.

When to use: On all projects; this approach is the most cost-effective (resources and time)
to ensure scalability.

How to use:

 n Design for 20x capacity.
 n Implement for 3x capacity.
 n Deploy for roughly 1.5x capacity.

Why: D-I-D provides a cost-effective, JIT method of scaling your product.

Key takeaways: Teams can save a lot of money and time by thinking of how to scale
solutions early, implementing (coding) them a month or so before they are needed, and
deploying them days before the customer rush or demand.

Our firm is focused on helping clients address their scalability needs. As you might
imagine, customers often ask us, “When should we invest in scalability?” The some-
what f lippant answer is that you should invest (and deploy) the day before the solution
is needed. If you could deploy scalability improvements the day before you needed
them, your investments would be “ just in time” and this approach would help maxi-
mize firm profits and shareholder wealth. This is similar to what Dell brought to the
world with configure-to-order systems combined with just-in-time manufacturing.

But let’s face it—timing such an investment and deployment “just in time” is simply
impossible, and even if possible it would incur a great deal of risk if you did not nail
the date exactly. The next best thing to investing and deploying “the day before” is
AKF Partners’ Design-Implement-Deploy or D-I-D approach to thinking about scalability.
These phases match the cognitive phases with which we are all familiar: starting to
think about and designing a solution to a problem, building or coding a solution to
that problem, and actually installing or deploying the solution to the problem. This
approach does not argue for nor does it need a waterfall model. We argue that agile
methodologies abide by such a process by the very definition of the need for human
involvement. You cannot develop a solution to a problem of which you are not aware,
and a solution cannot be manufactured or released if it is not developed. Regardless of
the development methodology (agile, waterfall, hybrid, or whatever), everything we
develop should be based on a set of architectural principles and standards that define
and guide what we do.

Design
We start with the notion that discussing and designing something are both significantly
less expensive than actually implementing that design in code. Given this relatively

ptg18186811

7Rule 2—Design Scale into the Solution (D-I-D Process)

low cost, we can discuss and sketch out a design for how to scale our platform well in
advance of our need. For example, we clearly would not want to deploy 10x, 20x, or
100x more capacity than we would need in our production environment. However, the
cost of discussing and deciding how to scale something to those dimensions is compar-
atively small. The focus then in the (D)esign phase of the D-I-D scale model is on scaling
to between 20x and infinity. Our intellectual costs are high as we employ our “big
thinkers” to think through the “big problems.” Engineering and asset costs, however,
are low as we aren’t writing code or deploying costly systems. Scalability summits, a
process in which groups of leaders and engineers gather to discuss scale-limiting aspects
of a product, are a good way to identify the areas necessary to scale within the design
phase of the D-I-D process. Table 1.1 lists the phases of the D-I-D process.

Implement
As time moves on, and as our perceived need for future scale draws near, we move to
(I)mplement our designs within our software. We reduce our scope in terms of scale
needs to something that’s more realistic, such as 3x to 20x our current size. We use “size”
here to identify that element of the system that is perceived to be the greatest bottleneck
of scale and therefore in the greatest need of modification to achieve our business results.
There may be cases where the cost of scaling 100x (or greater) our current size is not
different from the cost of scaling 20x. If this is the case, we might as well make those
changes once rather than going in and making changes multiple times. This might be
the case if we are going to perform a modulus of our user base to distribute (or share)
users across multiple (N) systems and databases. We might code a variable Cust_MOD
that we can configure over time between 1 (today) and 1,000 (five years from now).
The engineering (or implementation) cost of such a change really doesn’t vary with the
size of N, so we might as well make Cust_MOD capable of being as large as possible.
The cost of these types of changes is high in terms of engineering time, medium in
terms of intellectual time (we already discussed the designs earlier in our lifecycle), and
low in terms of assets as we don’t need to deploy 100x our systems today if we intend
to deploy a modulus of 1 or 2 in our first phase.

Table 1.1 D-I-D Process for Scale

Design Implement Deploy

Scale objective 20x to infinite 3x to 20x 1.5x to 3x

Intellectual cost High Medium Low to medium

Engineering cost Low High Medium

Asset cost Low Low to medium High to very high

Total cost Low to medium Medium Medium

ptg18186811

8 Chapter 1 Reduce the Equation

Deploy
The final phase of the D-I-D process is (D)eploy. Using our modulus example, we
want to deploy our systems in a just-in-time fashion; there’s no reason to have idle
assets diluting shareholder value. Maybe we put 1.5x our peak capacity in production
if we are a moderately high-growth company and 5x our peak capacity in production
if we are a hyper-growth company. We often guide our clients to leverage the cloud
for burst capacity so that we don’t have 33% of our assets waiting around for a sudden
increase in user activity. Asset costs are high in the deployment phase, and other costs
range from low to medium. Total costs tend to be highest for this category because
to deploy 100x necessary capacity relative to demand would kill many companies.
Remember that scale is an elastic concept; it can both expand and contract, and our
solutions should recognize both aspects. Therefore, f lexibility is key, because you may
need to move capacity around as different systems within your solution expand and
contract in response to customer demand.

Designing and thinking about scale come relatively cheaply and thus should happen fre-
quently. Ideally these activities result in some sort of written documentation so that others
can build upon it quickly should the need arise. Engineering (or developing) the architected
or designed solutions can happen later and cost a bit more overall, but there is no need to
actually implement them in production. We can roll the code and make small modifications
as in our modulus example without needing to purchase 100x the number of systems we
have today. Finally, the process lends itself nicely to purchasing equipment just ahead of our
need, which might be a six-week lead time from a major equipment provider or having one
of our systems administrators run down to the local server store in extreme emergencies.
Obviously, in the case of infrastructure as a service (IaaS, aka cloud) environments, we do
not need to purchase capacity in advance of need and can easily “spin up” compute assets for
the deploy phase on a near-as-needed and near-real-time basis.

Rule 3—Simplify the Solution Three Times Over
Rule 3: What, When, How, and Why

What: Used when designing complex systems, this rule simplifies the scope, design, and
implementation.

When to use: When designing complex systems or products where resources (engineering
or computational) are limited.

How to use:

 n Simplify scope using the Pareto Principle.
 n Simplify design by thinking about cost effectiveness and scalability.
 n Simplify implementation by leveraging the experience of others.

Why: Focusing just on “not being complex” doesn’t address the issues created in require-
ments or story and epoch development or the actual implementation.

Key takeaways: Simplification needs to happen during every aspect of product development.

ptg18186811

9Rule 3—Simplify the Solution Three Times Over

Whereas Rule 1 dealt with avoiding surpassing the “usable” requirements and eliminat-
ing complexity, this rule addresses taking another pass at simplifying everything from
your perception of your needs through your actual design and implementation. Rule 1
is about fighting against the urge to make something overly complex, and Rule 3 is about
attempting to further simplify the solution by the methods described herein. Sometimes
we tell our clients to think of this rule as “asking the three hows”: How do I simplify
my scope, my design, and my implementation?

How Do I Simplify My Scope?
The answer to this question of simplification is to apply the Pareto Principle (also
known as the 80-20 rule) frequently. What 80% of your benefit is achieved from 20%
of the work? In our case, a direct application is to ask, “What 80% of your revenue
will be achieved by 20% of your features?” Doing significantly less (20% of the work)
while achieving significant benefits (80% of the value) frees up your team to perform
other tasks. If you cut unnecessary features from your product, you can do five times as
much work, and your product will be significantly less complex! With four-fifths fewer
features, your system will no doubt have fewer dependencies between functions and as
a result will be able to scale both more efficiently and more cost-effectively. Moreover,
the 80% of your time that is freed up can be used to launch new product offerings as
well as invest in thinking ahead to the future scalability needs of your product.

We’re not alone in our thinking on how to reduce unnecessary features while keeping
a majority of the benefit. The folks at 37signals, now rebranded as Basecamp, are huge
proponents of this approach, discussing the need and opportunity to prune work in both
their book Rework6 and in their blog post titled “You Can Always Do Less.”7 Indeed,
the concept of the “minimum viable product” popularized by Eric Reis and evangelized
by Marty Cagan is predicated on the notion of maximizing the “amount of validated
learning about customers with the least effort.”8 This “agile” focused approach allows
us to release simple, easily scalable products quickly. In so doing we get greater product
throughput in our organizations (organizational scalability) and can spend additional time
focusing on building the minimal product in a more scalable fashion. By simplifying our
scope, we have more computational power because we are doing less. If you don’t believe
us, go back and read Jeremy King’s story and his lessons learned. Had the eBay team
reduced the scope of features like Feedback, the V3 project would have been delivered
sooner, at lower cost, and for relatively the same value to the end consumer.

How Do I Simplify My Design?
With this new, smaller scope, the job of simplifying our implementation just became
easier. Simplifying design is closely related to the complexity aspect of overengineering.
Complexity elimination is about cutting off unnecessary trips in a job, and simplifica-
tion is about finding a shorter path. In Rule 1, we gave the example of asking a database
only for that which you need; select(*) from schema_name.table_name became select
(column) from schema_name.table_name. The approach of design simplification suggests

